Etude sur les alternatives de lanceurs futurs US
Page 1 sur 1
Le "Congressional Budget Office" (CBO) a pondu une étude comparative des différentes solutions possibles pour les lanceurs futurs US.
http://www.cbo.gov/showdoc.cfm?index=7635&sequence=0&from=7
Preface
Currently available launch vehicles have the capacity to lift
payloads into low earth orbit that weigh up to about 25 metric tons,
which is the requirement for almost all of the commercial and
governmental payloads expected to be launched into orbit over the
next 10 to 15 years. However, the launch vehicles needed to support
the return of humans to the moon, which has been called for under
the Bush Administration’s Vision for Space Exploration, may be
required to lift payloads into orbit that weigh in excess of 100
metric tons and, as a result, may constitute a unique demand for
launch services. What alternatives might be pursued to develop and
procure the type of launch vehicles necessary for conducting manned
lunar missions, and how much would those alternatives cost? This
Congressional Budget Office (CBO) study—prepared at the request of
the Ranking Member of the House Budget Committee—examines those
questions. The analysis presents six alternative programs for
developing launchers and estimates their costs under the assumption
that manned lunar missions will commence in either 2018 or 2020. In
keeping with CBO’s mandate to provide impartial analysis, the study
makes no recommendations. Paul B. Rehmus wrote the study under the
supervision of J. Michael Gilmore. Raymond Hall prepared the cost
estimates for the alternative launch vehicle programs considered in
the study. Robert Dennis, Douglas Hamilton, David Moore, and Thomas
Woodward of CBO provided comments on an earlier draft, as did
representatives from several U.S. aerospace companies and the
National Aeronautics and Space Administration. Marshall Kaplan of
the Institute for Defense Analyses reviewed the study and provided
insights. (The assistance of external reviewers implies no
responsibility for the final product, which rests solely with CBO.)
Loretta Lettner edited the study, and Christine Bogusz and Kate
Kelly proofread it. Cynthia Cleveland and Allan Keaton formatted the
tables, Maureen Costantino designed the cover, and Christian Howlett
prepared the study for publication. Lenny Skutnik printed the
initial copies, and Simone Thomas prepared the electronic version
for CBO’s Web site (www.cbo.gov).
Donald B. Marron
Acting Director
http://www.cbo.gov/showdoc.cfm?index=7635&sequence=0&from=7
Preface
Currently available launch vehicles have the capacity to lift
payloads into low earth orbit that weigh up to about 25 metric tons,
which is the requirement for almost all of the commercial and
governmental payloads expected to be launched into orbit over the
next 10 to 15 years. However, the launch vehicles needed to support
the return of humans to the moon, which has been called for under
the Bush Administration’s Vision for Space Exploration, may be
required to lift payloads into orbit that weigh in excess of 100
metric tons and, as a result, may constitute a unique demand for
launch services. What alternatives might be pursued to develop and
procure the type of launch vehicles necessary for conducting manned
lunar missions, and how much would those alternatives cost? This
Congressional Budget Office (CBO) study—prepared at the request of
the Ranking Member of the House Budget Committee—examines those
questions. The analysis presents six alternative programs for
developing launchers and estimates their costs under the assumption
that manned lunar missions will commence in either 2018 or 2020. In
keeping with CBO’s mandate to provide impartial analysis, the study
makes no recommendations. Paul B. Rehmus wrote the study under the
supervision of J. Michael Gilmore. Raymond Hall prepared the cost
estimates for the alternative launch vehicle programs considered in
the study. Robert Dennis, Douglas Hamilton, David Moore, and Thomas
Woodward of CBO provided comments on an earlier draft, as did
representatives from several U.S. aerospace companies and the
National Aeronautics and Space Administration. Marshall Kaplan of
the Institute for Defense Analyses reviewed the study and provided
insights. (The assistance of external reviewers implies no
responsibility for the final product, which rests solely with CBO.)
Loretta Lettner edited the study, and Christine Bogusz and Kate
Kelly proofread it. Cynthia Cleveland and Allan Keaton formatted the
tables, Maureen Costantino designed the cover, and Christian Howlett
prepared the study for publication. Lenny Skutnik printed the
initial copies, and Simone Thomas prepared the electronic version
for CBO’s Web site (www.cbo.gov).
Donald B. Marron
Acting Director
Invité- Invité
Intéressant document, malheureusement déjà un peu dépassé par les dernières modifications annoncées par le NASA pour l'ARES V.
Parmi les infos intéressantes qu'on peut glaner dans ce rapport (et remarques qu'il suscite sans les formuler) :
Parmi les infos intéressantes qu'on peut glaner dans ce rapport (et remarques qu'il suscite sans les formuler) :
- le coût de développement de la navette en $2006 : ~40 G$,
- le flou artistique sur le détail des coûts de la navette :
- développement connu approximativement seulement, alors que pour Saturn V il est connu avec précision,
- incapacité de la commission parlementaire de déterminer les coûts de tirs individuels pour des cadences de tirs autres que 4 par an,
- impossibilité de départager coûts de maintenance et coût de la conduite des opérations de tir,
- l'importance des coûts de développement de la motorisation pour un lanceur (la majeure partie !)
- utiliser de nombreux moteurs peut être bénéfique (sur le plan de sureté comme du coût de développement de la motorisation grâce à l'utilisation de moteurs existants) en ce sens que le mode de défaillance le plus fréquent pour un moteur à carburant liquide est l'extinction, ce qui peut se compenser de manière dynamique si le nombre de moteurs est suffisant et si les automatismes de compensations sont techniquement matures (contrairement à la N-1) "Reliability calculations are complex, involving a number of tradeoffs. On the one hand, more engines and sticks imply the need for more tanks, valves, sensors, and moving parts, all of which present more failure modes. On the other hand, with enough engines, if one failed to ignite (one of the most common failure modes for engines), the remaining engines might still be able to deliver a payload into its intended orbit."
Naturellement ceci n'est pas vrai pour le cas d'une multitude de propulseurs d'appoints, sauf à considérer des mécanismes complexes de redistribution d'ergols entre corps central et boosters... - La nécessitée de pouvoir éjecter le vaisseau habité du lanceur en cas de catastrophe n'implique pas seulement une accélération progressive pour limiter la pression dynamique sur le vaisseau habité durant la traversée de l'atmosphère, mais implique aussi une trajectoire plus "penchée" durant le lancement pour permettre de limiter les g encaissés lors d'une rentrée atmosphérique en trajectoire balistique suite à une mise en orbite avortée à haute altitude :
- Cette contrainte implique une détérioration des performances du lanceur, notamment des Delta et des Atlas.
- Saturn V ne respectait pas ce critère sur la limitation du nombre de g en cas de retour inopiné en trajectoire balistique de la capsule suite à un tir avorté à haute altitude...
_________________
Les fous ouvrent les voies qu'empruntent ensuite les sages. (Carlo Dossi)
Sujets similaires
» Mars Direct, points forts et faiblesses. Alternatives
» Futurs équipages de l'ISS
» Futurs Obsolètes
» Futurs équipages
» Travail de fin d'étude
» Futurs équipages de l'ISS
» Futurs Obsolètes
» Futurs équipages
» Travail de fin d'étude
Page 1 sur 1
Permission de ce forum:
Vous ne pouvez pas répondre aux sujets dans ce forum